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1 Likelihood technique

A global fit to the CKM matrix elements may be performed using several methods [1,
2, 3, 4]. These treat in different ways the available information on the experimental and
the theoretical uncertainties. We employ a Bayesian approach to construct a global
inference function, from which probability intervals for the relevant parameters may be
derived. The uncertainties are described in terms of pdf’s which quantify the confidence
on the values of the involved variables.

We first motivate the procedure for a single constraint; a more general description
will follow. The oscillation frequencies of the neutral B meson systems can be related,
within the SM, to the CKM parameters p and 7 through an equation of the type

1-p+7t=c (1)

where c is a quantity formed of the experimentally measured Am (c oc Amg, Am,™t),
and of other theoretically determined parameters.

In the ideal case where ¢ would be perfectly known, the constraint expressed by
equation 1 would result in a curve in the p-77 plane, i.e. a circle of radius y/c. The pdf
describing our beliefs in the p and 7 values would be

f(p,ile) =6((1—p)* +7° —c) (2)

The points in the circumference would appear as likely. This would remain so in the
absense of other experimental piece of information, or theoretical prejudice, which
might exclude points outside a determined physical region, or in general lead to the
assignement of different weights to the various points.

In a realistic case ¢ is not known exactly, the available knowledge about its value
being contained in a corresponding pdf, f(c). This way, instead of a single circle, there
is in reality an infinite collection of curves, each having a weight f(c). The expected
values for p and 7 are thus obtained from

1.0 = [ 1(p.7le) f(e) de 3)

Supposing a best experimental estimate for ¢ would be given by ¢, with uncertainty
0., and assuming a Gaussian distribution, the previous equation would take the form

fEm = [ola-pr e -0 o a
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In a more general case, ¢ may be formed from various input quantities {x;}, denoted by
x, and generally described by a joint pdf f(x); when the various z; can be considered




independent, the joint distribution simplifies to f(x) ~ [1; f(x;). Denoting by ¢(x) the
dependency of ¢ on the input quantities x, f(c) can generally be obtained as

fle) = / F(x)5(c — e(x)) dx

We describe now more generally the procedure employed in this analysis. It involves
the construction of a global inference, £, relating p, 7, the constraints ¢ = {cj}j”il, and
the parameters x = {z;}}¥,. The various constraints c, standing for Amg, Am,/Amy,

€, | Van/Veal, sin(25), may be expressed as

¢ = ¢(P, ;%) (4)

where the parameters x denote here all experimentally measured and theoretically
calculated quantities on which ¢ depend. The set of measured constraint values is
represented by ¢ = {¢;}72;.

Making use of Bayes’s theorem,

E(ﬁ’ uk C’X|é) (&8 f(é|:5= ﬁ,C,X) 'f(C, X, Ps ﬁ)
(0,8 f(é‘c) ) f(C|X, P 77) ) f(Xa Ps ﬁ)
x f(&lc)-d(c—c(x,p,m) - f(x)- folp,n) ()

Here fo(p,7) is the prior distribution for p, 77, which we take as uniform; f(x) denotes
similarly the prior joint pdf for parameters x. In the derivation we have noted that c;
are uniquivocally determined, within the SM, from the values of p, , and x, and that
¢ depends on those parameters only through c. Considering the independence of the
various quantities, equation 5 becomes

L(p,7,x) o< I fléle(p,m,x)) x I fila:) (6)

j=1,M i=1,N

where the constraints imposed by the d-functions in the previous expression are as-
sumed, and the prior, constant f, distribution was also ommited.

Equation 6 constitutes our sought-after global inference. Within the framework
of Bayes statistics, and upon normalization, the left-hand side of the relation is the
posterior pdf for the argument parameters. The probability distribution for any of the
involved parameters can be achieved by integration over the remaining, sometimes also
called nuisance, quantities.

In a Baeysian approach the various uncertainties are treated in a similar fashion,
such that there is no conceptual distinction between those due to random fluctuations
in the measurements, those about the parameters of the theory, or those associated
to systematics of parameters known but with limited accuracy. Indeed, a systematic
uncertainty on a parameter on which the measured constraints depend may be handled
by adding the parameter to the collection x.

We consider two models for describing the uncertainties. A Guassian model is
chosen when the uncertainty is dominated by statistical effects, or there are many



contributions to the systematics error, so that the central limit theorem applies. Oth-
erwise, a uniform distribution is used for the uncertainty. When both a Gaussian and
a flat uncertainty components are available for a parameter, the resulting pdf is ob-
tained by convoluting the two distributions. I.e., for an observable parameter z of true
value Z, with Gaussian and uniform uncertainty components, o4, o,, one has for the
parameter and its pdf, f(z),

T = T+Xy+ Ty
flz) = d(x—7)Q Gaus(z|oy) @ Unif(z|oy)

Besides the constraints themselves, we classify the involved parameters into two
classes: (i) fitted, for which we construct pdf’s, and which are what we have been
denoting by x (e.g. the top mass); and (i) fized, which are taken as constant (e.g. the
W mass).

Joint pdf for p-7 and other posterior probabilities

The combined probability distribution for p and 7 are obtained by integrating Equa-
tion 6 over the (here nuisance) parameters x,

L o« [ I fGleGafe) x I1 file) du x folpm) — (7)

Jj=1,M =1,N

The integration can be performed using Monte Carlo methods; then the normalization
can be trivially performed, and all moments can also be easily computed. This expres-
sion shows explicitely that whereas a prior: all values of p and 7 are equally likely by
assumption, i.e. fo(p,7) = const., a posteriori the probability clusters in a region of
maximal likelihood.

The probability regions in the p-77 plane are constructed from the pdf obtained in
equation 7. These are called highest posterior density regions, and are defined such
that £(p, ) is higher everywhere inside the region than outside,

Pyi={e=(pn) : [, £(:)de=w; L) < ming,£(),Vagr,) ®)
The single parameter pdf can also be obtained in the same fashion. For example,
the p pdf is obtained as

L) o [ L) ©)

from which its expected value can be calculated together with the corresponding highest
posterior density intervals.

A similar procedure can be in principle used in order to obtain the pdf for other
desired parameters. Technically, one may also use the probability function for trans-
formed variables; i.e., that for u(x) one has f(u) = f(x)|0x/0u|, where the last factor



denotes the Jacobian. This way, the pdf for a parameter x can be obtained from
L@) o [ L7 dn

-
< [ L£(p.0) 15 di

where L£(p,7) has been computed in equation 7 above.
Besides the probability distribution in the p-n plane, we are most interested in
obtaining the posterior probability distribution for the Am, parameter.

2 Making use of the Amy; amplitude information

The 95% C.L. exclusion limit, together with the sensitivity, provide a rather concise
way of summarizing the results of the analysis. However, more information is contained
in the full amplitude scan to the data. Therefore, in our fit to the CKM parameters we
ought to use such more complete, continuous information about the degree of exclusion
for Am.

The measured values of the amplitude and its uncertainty, A and o4, may be used
to derive [?], in the Gaussian approximation, the log-likelihood function, AlnL>®(Amy),
referenced to its value for an infinite oscillation frequency

1 1

AlnL®(Am,) = InL(oc) — InC(Am,) = (——A) —

2 JA
. 11
~ 11
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The last two relations give the expected average log-likelihood value for the cases when
Amy corresponds to the true (mizing case) or is far from (no-mizing case) oscillation
frequency of the system, characterized respectively by unit and null expected amplitude
values.
—NB: Put the plots. ...

The log-likelihood difference, according to the central limit theorem of likelihood
theory, is y2-distributed, AlnL = % x2. We translate therefore the amplitude scan into
the likelihood ratio

- Amg)
R(AmM.) = e—AlnL (Amyg) _ s/ _ e o2 (Amg) 10
(Am,) SNESh (10)
through which the constraint for Am is implemented in the fit. We re-iterate that the
exponent in equation 10 corresponds to the x2, or log-likelihood, difference between the
cases where an oscillation signal is present and absent, for which the true amplitude



2 2
value is 1 and 0, respectively: —2 [(@) — (A) . Had the second term not been

2 oA oA
included, as it has been done in earlier studies, would result in Am, values with A > 1
being assigned lower probability with respect to those with A = 1, the undesirable.
This way, hypotheses for Amg associated with larger .A-values in the scan contribute
a larger weight in the fit.
—NB: Can compare methods with toy, if time allows . ..

2.1 Extending the amplitude spectrum

The amplitude fits are performed for Amg values lower than a given threshold, beyond
which the fit behavior may become unstable. On the other hand, in the frmaework of
the CKM fit, it is in principle desirable to have R defined for all positive frequency
values, which in turn demands for a continuation of the measured amplitude spectrum.

The extrapolation of the value of o4 may be achieved, under the assumption of
absense of a true oscillation singal in that region of the spectrum, through an analytical
description of the significance curve

o' o« W(Amy, 0y, 0,)

Here W in a known function describing the expected significance dependency on Amy
thorugh the parameters o; and o, which denote the B, decay lenght and relative mo-
mentum uncertainties. For the combined amplitude scans from several mesurements,
which is the case of the world average, these parameters may be adjusted using the
measured part of the spectrum.

The extrapolation of A is not straighforward. The following possibilities may be
considered:

e A = 0; which is the a priori expectation for no mixing.
o A= %; this would set R to unit for the extrapolated Am, values.

o A x 0 y4; assumption of constant é for Am, above sensitivity.

3 Constraints from neutral B meson mixing

Within the SM Amyg, are very well aproximated by the relevant electroweak box di-
agrams. These are dominated by top-quark exchange. The result of the calculation
obtained using the AB = 2 effective Hamiltonian yields for |M{,| = Am, (¢ = d, s):

G? .
| M| = T;anmBq (Bs,f5,)S (x0)[VigVas!”. (11)

Here G'r is the Fermi constant; np, is a QCD correction factor calculated in NLO;

mp, and my are the B, meson and W boson masses. The dominant uncertainties in



equation (11) come from the evaluation of the hadronic quantities: fp,, the B meson
decay constant, and Bp,, which parameterizes the value of the hadronic matrix element.
The Inami-Lim function is given by

which describes the |AB| = 2 transition amplitude in the absence of strong interaction,
2

where the mass of the top quark enters via z; = 174
w

3.1 Amd

Expressing equation (11) above, for the B, case, in terms of the Wolfenstein parameters,
we obtain for Amy,

Amg = Cam, A2X°[(1 — p)* + 7°mp, f5,Bp,n5,S(x1), (12)
where Capm, = G%ﬁg"
The parameters with dominant uncertainties in equation (12) are fl%d, A, X\, which

are varied parameters of the fit. A Gaussian constraint is implemented in the global
likelihood

~ 2
1( Amg—Amy

eiﬁ( 7amg ) (13)

where Amy is provided by the r.h.s. of equation (12), and Amyg and oam , denote the
experimentally measured values.

3.2 Am,

The size of side |Viq|/(A|Ve|) of the unitarity triangle can still be obtained from the
ratio of |[M%| and | M3, ]:

Amg _ |Miga| _ mp, f5,BB,18, |Via|®
Amg [ Mgl mBsfl%sBBsnBs Vis|?

(14)

which is expected to be less dependent on the absolute values of fg and Bg. Hence we

can characterise it by
[B,V/Bs,

= , 15
3 to B (15)

the value of which is obtained from lattice QCD calculations.
The constraint we use from Amy is expressed, from equation (14), as

2
ma, 526 1

- , 16
mp, A2 (1 - /6)2 + 772 ( )

Ams = Amd



where Amy is here taken as an experimental input.

The parameters with dominant uncertainties in equation (16) are £, A, A, which are
varied parameters of the fit. The constraint is implemented via the likelihood ratio, R,
after accessing the amplitude point (A, 04) associated to the frequency value obtained
by evaluating the r.h.s. of equation (16).

4 Other constraints and input

Vub

4.1 |

The CKM matrix elements |V,| and |V,| are measured in semileptonic B decays.
A direct determination of the ratio is achieved via end point analysis in inclusive
semileptonic B decays; the first is determined also from measurements of exclusive
semileptonic branching ratios.

In terms of the re-scaled Wolfenstein parameters, the constraint |Vy,|/|Ves| is ex-
pressed as:

D N v
Vsl / Vs = —/p* + 172 (17)

Both Gaussian and flat uncertainties are computed, and a corresponding convoluted
pdf is employed in the implementation of the constraint.

4.2 |€K‘

The parameter €x expresses the measurement of indirect CP violation in the neutral
K system.
In terms of the Wolfenstein parameters it is given by

lex| = CBrA’X°h[—mz,+ A2\ (1—p— (7" +7°) \?) nS ()
+ 7735(3707'7;0]7 (18)

where C, = %. The short distance QCD corrections are codified in the the
coefficients 7y, 1, and n3, and are functions of the charm and top quark masses and
of the QCD scale parameter Agcp; the n;’s have been calculated in the NLO. The
Inami-Lim functions, which describe the |[AS| = 2 transition amplitude in the absence

of strong interactions, are given by

1 9 1 3 1 3 L
ARSI ES NS T W 1 S
() = = [4+41—$t 2(1—$t)2] 21—z, ™™
z; — 8z +4 3 m . om?
S(xe, ) = —zInz, + 20 [ 10— In z; 11| T, = M—\;:v

The parameters with dominant uncertainties are By, 1, 73, m. and m;.
A Gaussian constraint is implemented for |ex|.



4.3 sin(28)

A direct determination of the angles of the unitarity triangle can be achieved via mea-
surements of CP asymmetries in various B decays. The value of sin(23) is meaasured
in B — J/YK decays..

The UT angles can be expressed directly in terms of the re-scaled Wolfenstein
parameters by:

. _ 29(1-p)

sin(28) = e (19)
. _ 21 (7° + p(p — 1))

@) = AP (20)
. 257

sin(2y) = 7t (21)

A Gaussian constraint is implemented for sin(2/) alone. The expressions for sin(2c)
and sin(27) are also included, which may be used to obtain the corresponding posterior
pdf’s.

5 Posterior probability distributions

5.1 The unitarity triangle in the p-7 plane
5.2 1-Dimensional posterior constraint distributions

5.3 Expected SM PDF for Am;

Here we show the probability distribution for Amg obtained from the SM fit. The
fit is performed in two configurations, namely using and excluding the experimental
information, provided by the amplitude scan, on the Am, parameter itself.
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